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Introduction and Related Work. The increasing range of applications in technol-
ogy where the physical environment is constantly interacting and automatically
being monitored by embedded computers, has led to an ample research on hy-
brid systems as a formal model for design and analysis of such embedded control
systems. A hybrid system is a composition of discrete modes representing the
control mode and ordinary differential equations (ODE) representing the contin-
uous evolution of physical activities inside each operating mode of the system.
As these discrete-continuous interactions between the embedded computers and
the physical world may often become complex and safety-critical, there is an ur-
gent need in improving the accuracy of representing this tight relation between
the two components in simulatable models, and complementing it with reliable
automatic verification techniques.

A significant factor which has direct implications and is often neglected in
the model design is the feedback delay, although it naturally arises in feedback
loops in modern forms of embedded digital control, like networked control sys-
tems. With outdated information due to delays in receiving data from sensors,
and similarly not being able to apply control actions on time due to delays in
actuator channels, delays cause overshoots and oscillations which often invali-
date both the stability and safety certificates obtained from delay-free models.
While resulting in more accurate models, delays inherently induce extra com-
plexity which in turn prevents straightforward generalizations of the already es-
tablished automatic verification methods for delay-free hybrid systems [1]. This
delay-induced complexity comes from the fact that the evolution of dynamics
is no longer dependent on the current state only, but depends on an infinite
sequence of states during a finite time interval in the past, and thus resulting in
an infinite-dimensional dynamical system. This shows that one of the main chal-
lenges in solving the reachability and verification problem for delayed dynamics
is to find a computationally feasible way to represent and store the history in-
formation which is going to govern the current evolution of the dynamics. The
research community has already made attempts to tackle these challenges in
purely continuous systems where they exploited the model of Delay Differential
Equations (DDE). Such a DDE with punctual delays takes the shape

dx(t)/dt = f(x(t), x(t− δ1), ..., x(t− δn)),
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where the δi are positive constants. These attempts have resulted in several
verification approaches for dynamical systems represented by DDEs [2-4].

Recently, delays have also been considered in discrete-time and discrete-state
systems where delayed observation and actuation in finite-state automata has
led to interesting results on strategy synthesis for discrete safety games [5,10].
However, it is surprising that despite a large portion of digital control schemes
being an integration of discrete and continuous state dynamics, i.e., hybrid state
dynamics, there are as yet no similar developments for controlling and verifying
hybrid systems subject to delays. In [6] sufficient conditions on stabilization of
hybrid stochastic systems under input delays are obtained. In this model there is
always at most one delayed switch that is latent, i.e., delayed discrete transition,
which in timed automata could also be easily modeled by starting a clock in ev-
ery switch and performing the action after a certain time reached by the clock.
In our model however, we model the pipelining of events within communication
networks, such that, multiple delayed switches referring to different events queu-
ing in the network, may coexist simultaneously. This is modelled by transitions
being guarded by presence of a certain event exactly δ time units ago: in a timed
I/O-automaton with delays, a transition l→ a(−δ)/b→ l′ would permit a move
from l to l′ together with generation of output event b iff input event a has been
present exactly −δ time units ago. In this way, by referring directly to the events
in the past (e.g., whenever an X event happened Y time units ago, a certain
action is performed), our model can memorise reactions to arbitrarily many ar-
bitrarily close events and perform the corresponding action to each event. These
actions are essentially queued in the order that the corresponding events hap-
pened in the past. Thus, the delay form we aim to model is a richer expression
of delay through which no event can go undetected as a result of being too close
to another event that has just been detected, or happening simultaneously with
another event.

Motivated by the above observations, introducing a formal semantic, i.e.,
mathematical model for rigorously modeling delays arising in hybrid systems
thus constitutes the main objective of this PhD project. Using the recent results,
DDEs shall be used for modeling the continuous dynamics with a potentially
enhanced accuracy through considering a distributed version of delays, where
delayed variables do not refer to a single point in the past, but rather to a
convolution of the past solution with a windowing function, thus integrating
over periods of the past. The general shape is given by the distributed DDE

dx(t)/dt = f

(
x(t),

∫ −δ
0

g (x(t− s), s) ds

)
,

where g is a windowing function and δ a positive constant. The windowing func-
tion could be a simple mask like g(x, s) = x for all s ∈ [-δ,0] or a smooth window
like the Hamming window. On the other side, the discrete-continuous interface
requires a reasonable notion of delayed triggering of discrete transitions, suitable
for distributed network systems, to be defined as well. First findings indicate that
even for simple automata classes, like timed automata, the reachability problem
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becomes undecidable once pipelined delays are introduced. Observing that the
delay form described above cannot be modeled by a finite number of clocks,
undecidability properties come as a natural consequence when composing timed
automata with this type of delay. A reasonable model of delayed automata thus
is a prerequisite of our theory. Once this model is established, our aim is to
develop verification techniques for delayed hybrid systems.
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Fig. 1. Distributed delays can be modeled by combining a discrete delay with a low-
pass filter (1.A). As long as the continuous input signal x(t) is band-limited, the
sampling theorem then enables us to reconstruct the original signal from a finite number
of samples in exact and continuous form (1.B). Using the linearity property of the
delay block, one obtains the exact same output even when the delay block is replaced
between the sampling and reconstructing blocks. However, with this new arrangement
of blocks, instead of remembering the infinitely many points from the past, we end up
reconstructing the whole infinitesimal history by remembering only a finite number of
points (1.C).

Current stage of research. The recent results on DDEs, despite constituting a
major step toward successful analysis and verification of continuous dynamics
subject to delays, share a common limitation on their assumption that delays
are constant and discrete; namely, given a constant fixed delay δ, it is assumed
that the state at every instant of time, x(t), is dependent on the previous state
exactly δ time units in the past, x(t − δ). However, most of the engineering
practice find punctual delays an overidealization when integrating them in the
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model design. In [7] Toyota researchers have proposed a verification benchmark
where in particular the air-fuel ratio control is governed by a DDE, which comes
from the fact that the exhaust gas produced by the engine takes some time to
reach the oxygen sensor, i.e., it induces a transport delay. However, since exhaust
gas gets compressed and mixed by turbulences down the exhaust pipe, in the
Simulink model [9] “smoothed” delays are implemented instead of discrete point
delays.

Motivated by the benchmark in [7] and the interesting decidability results
obtained once punctuality is relaxed [8], currently we are exploiting the idea of
using distributed delays as a more relevant model and potentially easier to ana-
lyze compared to discrete delays. The smoothing effect embedded in distributed
delays implies promising results in reconstructing the history segment based on
finite samples. This is due to the presence of low-pass filter which enables us to
use the Sampling Theorem and thus reconstruct the continuous delayed signal
from only a finite number of samples (See Fig.1). Thus, this approach ulti-
mately leads to the reduction of a DDE problem to that of solving an, albeit
higher-dimensional, standard ODE. Future work will exploit this reduction for
automatic verification of hybrid systems incorporating distributed delays.
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