
Discrete Polymorphism with Gradual Typing

Pedro Ângelo

Faculdade de Ciências & LIACC, Universidade do Porto, Porto, Portugal
pjfangelo@hotmail.com

1 Introduction

With the aim of seamlessly integrating static and dynamic typing, and hence har-
nessing the advantages of both typing disciplines, gradual typing [3,4,8] allows to
fine-tune the distribution of static and dynamic type checking in a program. To
accomplish this, gradual typing introduces the dynamic type, which stands for
unknown type information, and the consistency relation, required for the com-
parison of types with dynamic components. By annotating lambda-abstractions
with the dynamic type, one can delay type checking of that expression until
run-time. By deciding to add or remove dynamic type annotations, the quantity
of static and dynamic type checking also varies. Types that are compared with
the consistency relation need to be checked at run-time, to ensure program cor-
rectness. Run-time checks are performed via casts, which check the actual type
of expressions against its expected type. To illustrate, consider the expression
(λx : Dyn . x + 1) true. It clearly has a type error, however, by adding the
dynamic type, we are delaying the type checking to runtime, so this error will
only be uncovered when the program is running.

The successful application [8] of gradual typing to the parametric polymor-
phic Hindley-Milner (HM) type system [7, 10, 16] marks an important break-
through, showing that it is possible to apply it to statically typed functional
programming languages, which typically include polymorphism, such as Haskell
or ML.

Intersection types, originally defined in [5], extend the simply typed lambda-
calculus [9], by adding to the language of types an intersection operator ∩ and
allowing the same terms to be typed with different types. Thus, intersection
types provide a form of polymorphism, called discrete polymorphism, in which
it is possible to explicitly indicate every single instance of a type. Type systems
based on these types are able to type more programs than the HM type system,
some are able to type all the strongly normalizing terms, and also allow for
increased expressiveness when describing instances of polymorphic types. Since
the original publication, several other contributions have been published, which
focus on different aspects of intersection types, such as refined and improved type
systems [2, 6, 15,17]; type inference and fragments [11,13,14] and surveys [1]. A
reccuring example of an expression typed with intersection types is λx . x x.
By assigning type α → β ∩ α to the variable x, the expression is typed with
(α→ β ∩ α) → β.



2 Pedro Ângelo

Although the type inference problem for intersection types is not decidable in
general, it becomes decidable for finite rank fragments of the general system [13,
14]. In particular, rank 2 intersection types have a type inference problem which
is near in complexity to type inference for parametric polymorphic programming
languages such as ML, while typing more programs than ML [11,12].

2 Research Plan

My research nowadays consists in developing functional languages and static
verification mechanisms that integrate intersection types with gradual typing.

Problem being addressed and it’s relevance Given both the advantages of
gradual typing and intersection types, the potential of harnessing the advantages
of both verification techniques was what compelled me to pursue my current re-
search topic. The integration of these two verification techniques is technically
challenging due to their fundamentally different properties. In gradual typing,
the type that will be assigned to a variable is the type in the annotation, while
in intersection types, it can be one instance of a polymorphic type. Further,
since the original casts introduced by [4] are not prepared to deal with inter-
section types, a new compilation and operational semantics must be defined to
accommodate the different properties of these two techniques. There are few in-
tersection type implementations, such as [17], so I believe my work will help the
development and implementation of intersection type-based languages.

My solution Currently, my solution to integrate the two techniques in a type
system and type inference mechanisms follows standard practice in the area. In
the case of the type system, the solution consists of adding new type rules which
deal directly with intersection types, to the gradual type system. Developing a
type inference mechanism is more challenging. In this case, my research focus
on extending previous algorithms for finite rank intersection types to deal with
gradual types. This extension has some serious challenges and our first algorithm
for rank 2 types defines a non-deterministic procedure to infer a set of most
general types. As future work, I also want to develop a compilation phase which
inserts appropriate casts and operational semantics based on the blame calculus,
able to verify gradual intersection types at run-time.

Research Approach After getting up to date on the state of the art, my goal
is to develop a type system with the intended properties I seek. Then, it follows a
proof of soundness and the verification of several correctness criteria of the new
type system with respect to a new operational semantics for a core-language
explicitly typed with gradual intersection types. This type system and the un-
derlined operational semantics for the language are going to be implemented in
Haskell with the aim of a future integration on Core-Haskell. Finally, my goal
is to devise a type inference mechanism for a finite rank restriction of the type
system and verify its correctness and, eventually, its completeness.



Discrete Polymorphism with Gradual Typing 3

Expected Contribution The ultimate goal of this work is to develop and
implement a functional programming language which enables both intersection
types and gradual typing while also automatically inferring types for programs.
Several intermediate technical results that will stem from my research and will
aid in reaching the ultimate goal are the specification of annotated intersection
type systems, combining gradual typing with intersection types into a correct
type system, the definition of an operational semantics which will allow the use of
intersection types in a gradual framework, and finally a type inference algorithm
for this new hybrid type system. All these technical results are expected to be
proved correct using formal proofs and/or automated proofs.

3 Progress to date and current state of research

To date, I have defined a first draft of a gradual system with intersection
types [19], although much work still has to be done. Currently, I’m developing
a gradual intersection type system, which already has all its associated gradual
criteria proofs [18]. I also defined a type inference algorithm for a rank 2 gradual
intersection type system which was accepted for presentation at the symposium
Trends in Functional Programming 2019 [20]. Next, I will start working on the
compilation phase and the definition of an operational semantics with casts for
dynamic type checking and relate this type aware semantics with the original
type system.

References

1. van Bakel, S.: Intersection type disciplines in lambda calculus and applicative term
rewriting systems. Amsterdam: Mathematisch Centrum (1993)

2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. Journal of Symbolic Logic 48(4), 931–940 (1983)

3. Cimini, M., Siek, J.G.: The gradualizer: A methodology and algorithm for gener-
ating gradual type systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 443–455.
POPL ’16 (2016)

4. Cimini, M., Siek, J.G.: Automatically generating the dynamic semantics of gradu-
ally typed languages. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. pp. 789–803. POPL 2017 (2017)

5. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame Journal of Formal Logic 21(4), 685–693 (1980)

6. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable
terms. Mathematical Logic Quarterly 27(2-6), 45–58 (1981)

7. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 207–212. POPL ’82 (1982)

8. Garcia, R., Cimini, M.: Principal type schemes for gradual programs. In: Proceed-
ings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 303–315. POPL ’15 (2015)



4 Pedro Ângelo

9. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Com-
puter Science, Cambridge University Press (1997)

10. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society 146, 29–60 (1969)

11. Jim, T.: Rank 2 type systems and recursive definitions. Tech. rep., Cambridge,
MA, USA (1995)

12. Jim, T.: What are principal typings and what are they good for? In: Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 42–53. POPL ’96 (1996)

13. Kfoury, A.J., Wells, J.B.: Principality and decidable type inference for finite-rank
intersection types. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 161–174. POPL ’99 (1999)

14. Kfoury, A., Wells, J.: Principality and type inference for intersection types using
expansion variables. Theoretical Computer Science 311(1), 1 – 70 (2004)

15. Liquori, L., Rocca, S.R.D.: Intersection-types à la church. Information and Com-
putation 205(9), 1371 – 1386 (2007)

16. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3), 348 – 375 (1978)

17. Reynolds, J.C.: Design of the Programming Language Forsythe, pp. 173–233.
Birkhäuser Boston, Boston, MA (1997)

18. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined Criteria for Gradual
Typing. In: 1st Summit on Advances in Programming Languages (SNAPL 2015).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 32, pp. 274–293.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015)

19. Ângelo, P., Florido, M.: Gradual intersection types. In: Ninth Workshop on Inter-
section Types and Related Systems, ITRS 2018, Oxford, U.K., 8 July 2018 (2018)

20. Ângelo, P., Florido, M.: Type inference for rank 2 gradual intersection types. In:
Trends in Functional Programming, TFP 2019, Vancouver, B.C., Canada, 14 June
2019 (2019)


	Discrete Polymorphism with Gradual Typing

