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1 Addressed problem and related work

This work addresses the problem of formally verifying robustness of support
vector machines (SVMs), a major machine learning model for classification and
regression tasks. Robustness properties asserts whether a model produces sim-
ilar outputs on similar inputs, which is a key concept in adversarial machine
learning [7,11,24], an emerging hot topic studying vulnerabilities of machine
learning (ML) techniques in adversarial scenarios whose main objective is to
design methodologies for making learning tools robust to adversarial attacks.
Adversarial examples have been found in diverse application fields of ML such
as image classification, speech recognition and malware detection [7]. Current
defense techniques include adversarial model training, input validation, test-
ing and automatic verification of learning algorithms [7]. In particular, for-
mal verification of ML classifiers started to be an active field of investigation
[1,5,6,8,9,10,14,16,17,19,20,25,26] within the verification and static analysis com-
munity. Formal verification of robustness to adversarial inputs has been inves-
tigated for neural networks [1,6,16,19,20,26]. A classifier is robust to some per-
turbation of its input objects representing an adversarial attack when it assigns
the same class to all the objects within that perturbation. Thus, slight mali-
cious alterations of input objects should not deceive a robust classifier. Pulina
and Tacchella [16] first put forward the idea of a formal robustness verification
of neural network classifiers by leveraging interval-based abstract interpreta-
tion for designing a sound abstract classifier. This abstraction-based verification
approach has been pushed forward by Vechev et al. [6,19,20], who designed a
scalable robustness verification technique which relies on abstract interpretation
of deep neural networks based on a specifically tailored abstract domain [20].

While all the aforementioned verification techniques consider neural net-
works, this work focuses on SVMs [4], which are widely applied in different fields
where adversarial attacks must be taken into account, notably image classifica-
tion, malware detection, intrusion detection and spam filtering [2]. Adversarial
attacks and robustness issues of SVMs have been defined and studied by some
authors [2,3,15,23,27,29,30] investigating robust training and empirical robust-
ness evaluation of SVMs. To the best of our knowledge, no formal and automatic
robustness certification technique for SVMs has been studied.



2 Proposed solution

The proposed approach relies on a sound abstract version of a given SVM clas-
sifier to be used for checking its robustness. This methodology is parametric
on a given numerical abstraction of real values and, analogously to the case of
neural networks, needs neither abstract least upper bounds nor widening op-
erators on this abstraction. The standard interval domain provides a simple
instantiation of our abstraction technique, which is enhanced with the domain
of reduced affine forms, an efficient abstraction of the zonotope abstract do-
main. This robustness verification technique has been fully implemented in a
tool named SAVer (SVM Abstract Verifier), which is available at [18]. With
this tool it is possible to experimentally evaluate robustness of SVMs based on
linear and nonlinear (polynomial and radial basis function) kernels, which have
been trained on the popular MNIST dataset of images and on the recent and
more challenging Fashion-MNIST dataset. The experimental results of our SVM
robustness verifier appear to be encouraging: this automated verification is fast,
scalable and shows significantly high percentages of provable robustness on the
test set of MNIST, in particular compared to the analogous provable robustness
of neural networks.

3 Methodology

This work considers a standard per-sample robustness notion in the field of
machine learning: a classifier C : X → L is seen as a function from the input
space X to a set of labels L, a perturbation P : X → ℘(X) is a function mapping
a sample to a set of similar samples, a classifier C is said to be robust on a sample
x ∈ X w.r.t. a perturbation P when every sample in P (x) is classified in the
same way as x:

Robust(C,x, P )⇔ ∀x′ ∈ P (x):C(x′) = C(x)

in principle, running this test on every sample in the testing set allows to estimate
the probability of a classifier to be robust. However, P (x) is usually either an
infinite of unfeasible to compute set of points, making a concrete test impossible.

To overcome this issue, one can abstract the set P (x) with a single abstract
value P ](x) ∈ A, where A is the abstract domain of choice, such that P (x) ⊆
γ(P ](x)), then compute a superset of the labels of points in γ(P ](x)) using a
sound abstract version of the concrete classifier C] : A → ℘(L). By relying on
the standard notion of soundness in the field of abstract interpretation, it is
possible to show that

|C](P ](x))| = 1⇒ Robust(C,x, P )

as |C](P ](x))| = 1 implies that the superset of the labels of samples in P (x) is a
singleton, hence every sample is classified in the same way. This approach has the
advantage of being fast and efficient to compute, since an otherwise unfeasible



computation is performed symbolically on a single abstract value. On the other
hand, the abstract classifier can only compute a superset of the actual labels,
hence providing a sufficient but non necessary condition. Whenever C](P ](x))
allows to assert Robust(C,x, P ), that assertion is definitively true, but not vice-
versa: it may be the case that a classifier is robust on some input for some
perturbation, but the abstract analysis is not able to prove that. This notion
is well-known in the field of abstract interpretation, and it is referred to as
incompleteness.

While the aforementioned strategies can be applied to any type of classifier,
SAVer focuses on SVMs. It turned out that a sound abstract SVM classifier
can be built by finding appropriate sound abstract transfer functions for some
standard operators (sum, multiplication, sign), for the kernel functions (scalar
product, radial basis function, polynomial) and, only in the case of multi-label
classification, for the voting mechanism used by the SVM.

While this approach shares some similarities with standard program analy-
sis, there are also some relevant differences. First an foremost, it is possible to
rewrite the code of an SVM avoiding branching and loops. This allows to avoid
computation of least upperbounds and widening in the abstract classifier, which
would cause loss of precision. Moreover, SVMs exhibit patterns which are not
common in program analysis, and for which simple abstract domains such as the
intervals do not perform well, like expressions x−x. To overcome this limitation,
SAVer deploys an abstract domain based on affine forms [13,22]. This aspect has
been further improved by observing that some noise symbols introduced by the
transfer functions can be compacted into reduced affine forms, as described in
[21], saving memory space and computational time.

4 Experimental results

Findings presented in this work has been implemented in a tool called SAVer
(SVM Abstract Verifier), written in C, and made available on GitHub [18].
SAVer has been used to estimate robustness of state-of-the-art classifiers for the
popular MNIST [12] image dataset and the recent and more challenging alter-
native Fashion-MNIST dataset [28]. Both datasets contain gray scale images of
28 × 28 pixels, represented by normalized vectors of floating-point numbers in
[0, 1]784. The perturbation models chosen for the tests were L∞-norm perturba-
tions with increasing (relative) magnitudes. Benchmarks show the percentage of
samples of the full test sets for which a SVM is proved to be robust (and, dually,
vulnerable) for a given perturbation, the average verification times per sample,
and the scalability of the robustness verifier w.r.t. the number of support vectors.

Fig. 1 (left) shows percentage of samples for which SAVer managed to prove
robustness w.r.t increasing magnitude of an L∞ perturbation. Different curves
correspond to different kernels, hence different SVM models. Fig. 1 (right) com-
pares provable robustness using the RBF kernel on MNIST against Fashion-
MNIST datasets, suggesting that training a robust classifier for the latter is
more challenging.



Fig. 1. Robustness under L∞ perturbations

Tab. 1 reports percentage of provable robustness and execution times for the
RBF-based classifier on MNIST, under a L∞ perturbation with increasing mag-
nitude. As expected, robustness becomes harder to prove (and to achieve) with
higher perturbation magnitudes. On the other hand, it turns out that computa-
tional cost is not affected by the magnitude, as it is the case for DeepPoly and
other similar tools.

Magnitude Probable robustness (%) Time per image (ms)

0.01 99.83% 417.18
0.02 99.57% 415.95
0.03 99.19% 417.19
0.04 97.27% 416.98
0.05 93.58% 417.69
0.06 82.21% 417.21
0.07 67.76% 416.93
0.08 48.02% 417.21
0.09 28.10% 417.15
0.10 16.38% 417.97

Table 1. Execution times for an RBF classifier on MNIST, L∞ perturbation

Results can be compared to those of DeepPoly [20], a robustness verification
tool for deep neural networks based on abstract interpretation. As DeepPoly is
based on a different model, a strict comparison is not possible. It is however fair
to state that SAVer is at least competitive in terms of provable robustness, and
clearly outperforms the latter in terms of execution speed, as it can take over 10
seconds to produce an answer ([20]).
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